
J. Fluid Mech. (1966), vol. 44, part 2, pp.  225-253 

Printed in Great Britain 

Equilibrium turbulent boundary layers 

By G. L. MELLOR A N D  D. M. GIBSONt 
Department of Aerospace and Mechanical Sciences, Princeton University 

(Received 29 June 1964 and in revised form 31 March 1965) 

Empirical information is extracted from constant-pressure flows and, on this 
basis alone, the equations of motion are solved for flows where the pressure 
gradient parameter, /3 = B*(dp/dx)/r,,, is held constant. The experimental defect 
profiles of Clauser and the near-separating profile of Stratford are predicted 
quite well. 

The present work is an extension of the work of Clauser and Townsend in that 
a particular form for an effective or eddy viscosity is hypothesized. Here, how- 
ever, a continuous, and analytically precise family of defect profiles are calculated 
for the entire range, -0.5 < /3 < co. The solutions span the whole profile with 
the exception of the viscous sublayer. 

A detailed consideration of the viscous sublayer and a comparative examina- 
tion of various eddy viscosity hypotheses are included in a companion paper. 

1. Introduction 
A theoretically derived determination of basic turbulent transfer processes 

seems beyond our grasp. Despite this, it is still possible to gain considerable 
understanding of the behaviour of turbulent boundary layers which are in- 
fluenced by main stream pressure variations. 

If one considers the general case of arbitrary pressure distribution it is clear 
that the existing theories are, in fact, a combination of established theory, 
empiricism and analytical approximation. A modest goal of turbulent boundary- 
layer research is to increase that which is theoretical, reduce analytical approxi- 
mation, and then describe the empirical ingredients in as simple terms as 
possible. Out of this one hopes to achieve a fuller understanding of turbulent 
boundary-layer behaviour. 

Clauser (1954, 1956) has made an important contribution toward this goal. 
In  1954 he singled out for study a class of simple ‘equilibrium’ boundary-layer 
flows which, in 1956, he associated with a main-stream pressure distribution 
characterized by the parameter, /3 = B*(d’p/dx)/r,, = const. He also determined 
that one could analyze the outer portion of the boundary layer by assuming 
an eddy (or effective) viscosity, v, = K U P ,  where K was an absolute constant. 

As noted by Clauser (1954), the existing, general (arbitrary pressure gradient) 
boundary-layer theories fail to give correct answers for the simple, equilibrium 
case. Originally it was, and still is, our aim to construct a general theory 
which would, at  least, eliminate this inconsistency. However, we quickly 

t Present address: General Dynamics, Fort Worth, Texas. 
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found that the work started by Clauser was far from complete and did not yet 
provide a base from which to construct a more complicated theory. The present 
paper is therefore wholly concerned with equilibrium boundary layers. 

Townsend (1956, 1960, 1961) has extended the analysis of Clauser and 
Stratford in order to produce further useful results. The basic physical assump- 
tion in the present paper and Townsend’s later work are nearly identical and 
some of his results are similar to ours. However, Townsend’s work, like Clauser’s, 
is largely exploratory. As a result, the problem has been attacked piecemeal, and 
a considerable amount of analytical approximation and assumption is involved. 

Some features of the present work are that: 
(a )  An effective viscosity hypothesis, presumed to be independent of pressure 

(b)  A well-posed formulation (equations (14), (15) and (16)) is set forth. 
(c) The range of existence of non-separating equilibrium flows is established 

as -0-5 < /3 < 03. 

(d )  The equations are numerically integrated with precision through the entire 
defect layer and in the entire range, - 0.5 < P < co. 

( e )  The result is obtained that (for the sake of present and future analytical 
convenience) the second-order dependence of the defect profiles on Reynolds 
number may be neglected; the small error thus incurred has been calculated. 
(f) The calculated profiles show good agreement with the experimental 

profiles of Clauser. Significantly, we obtain good agreement with the incipient 
separation profiles of Stratford (1959 b)  where 7,,(x) N 0. In  this regard, a purely 
formal result of the theory is that defect profiles should be presented in the 
alternative form, ( U  - .)/up, instead of ( U  - u)/u7 for large /3, particularly when 
l/p-+O (u, is the conventional ‘friction velocity’, up is a ‘pressure velocity’ and 

In a companion paper (Mellor 1966; hereafter referred to as paper B), the 
effect of pressure gradients on the flow immediately adjacent to a wall will be 
investigated. 

gradient and valid in the entire defect layer, is hypothesized. 

uplu, = P”. 

2. Notation and definitions 
x, y = co-ordinates parallel and perpendicular to the wall; 
u, v = mean velocity components in the x, y directions; 
p , p  = pressure and density; 

1’ = kinematic molecular viscosity; 
U = free-stream velocity; U’ = d U / d x ;  
7 = total (turbulent plus molecular) shear stress; 
ve = (7/p)/(au/ay), effective (turbulent plus molecular) viscosity; 
70 = wall shear stress; 
S = approximate value of y marking the outer edge of the boundary layer; 

S* = s,” (1 - u/ D )  dy, displacement thickness; 

8 = (u/ U )  (1 - u/ U )  dy, momentum thickness; 
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H = 6*/0, shape factor; 
u, = (ro/p)&, friction velocity; 
y = u,/u; C f  = 2r0/pu2 = 2y2; 

A = jOw [( U - u)/u,] dy = 6*/y, defect displacement thickness; 

7 = Y / A  = Y(Y/d*);  
f ‘  = af/ar = (U-u) /u , ,  velocity defect; 
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G = IOm [ ( U - u ) / ~ , ] ~ d y / A  = \ r j f z d v ,  defect shape factor; . 
0 = v,/U6*; 
up = [(a* dp/dx)/p]+, pressure velocity; 
h = u J U ;  
< = rP& = h(y/d*);  

F’ = a q a c  = (u-u)/u, = f‘@; 
R = U6*/v, Reynolds number; 
P = (6* dp/dx) /r ,  = (u,/u,)~ = h2/y2, equilibrium boundary-layer parameter; 

m = exponent in equation (32)) defined by equation (30). 
K ,  K ,  B = empirical constants. (In this paper, K = 0.41, K = 0.016, B = 4.9.); 

For purposes of stipulating an effective viscosity hypothesis, the two principal 
portions of the boundary layer are the wall layer and the defect layer. A portion, 
common to both, is the overlap layer. In  the present paper we shall primarily be 
concerned. with the defect layer. 

3. The ‘law of the wall’ and velocity defect profiles 
As in Clauser’s analysis,? the starting-point o f  the present analysis is the 

realization that a set of experimental data typically in the form u/ U vs y /6  may be 
rescaledintoa wall form,u/u,  = u+(yu,/v),andadefectform, ( U - u ) / u ,  = f ’ (y /d) .  
If this is done for data at various Reynolds numbers, it is found that the wall 
form (or ‘law of the wall’) is universally valid for small values of yu,/v, while 
the defect form is (nearly) universally valid for large values of y/S. All of this is 
illustrated in figure 1 for two values of the Reynolds numbers (and where the 
length scale A has been used in place of 6). The small mismatch of the wall profile 
and the defect profiles evident in figure 1 should be ignored for the present; it will 
be discussed in 3 8. 

The foregoing considerations were initially suggested by von Karman and 
Prandtl and are fully discussed by Millikan (1938), who also found that the 
further assumption of the existence of a velocity overlap layer, which is described 
equally well by both forms, leads directly to the important conclusion that, in 
the overlap layer, u f  andf‘ must be logarithmic. In  fact, for our purposes, the 
logarithmic portion of the ‘law of the wall’ may be written 

u 1 u y  
- = -ln--F+B. 
U ;  K V 

t (Added in proof .) Throughout the writing of this paper we have unfortunately over- 
looked the work of Rotta (1950) who anticipated the value of defect and wall profiles and 
their inter-relationship. 

15-2 
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FIGURE 1. Illustration of the method of plotting velocity profiles (a),  in the defect 
form ( b ) ,  and the wall form ( c ) .  (The illustrative defect profile is taken from calculations 
when p = 1.) 
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The von Karman constant K will be taken as 0.41, and B = 4.9. Although 
there is some disagreement on the precise values of these constants, equation (1)  
is now believed to correlate data independently of the governing boundary con- 
ditions; that is, it is valid for pipes, channels, and boundary layers with or 
without pressure gradients. This last hypothesis was apparently established 
experimentally by Ludwig & Tillman (1950). We accept it tentatively, but will 
later find that it is subject to qualification. 

The logarithmic form depends on the fact that T 2: T~ in a portion of the wall 
layer extending beyond the viscous sublayer. On the other hand, the defect 
layers must be influenced by the inertial and pressure gradient terms in the 
equations of motion and, through these equations, by the governing boundary 
conditions, In the present paper we are concerned with the boundary-layer 
problem, and it was Clauser’s aim and it is the primary purpose of the present 
paper to predict the effect of pressure gradients on boundary-layer defect 
profiles. 

It was Clauser’s intuition that led him to attack the rather special class of 
pressure gradient where plots of ( U - u)/ur vs y/S are invariant at  succeeding 
intervals of the streamwise co-ordinate. These ‘ equilibrium layers’ which we now 
associate with constant values of ,& are, in some respects, analogous to  the 
Palkner-Skan laminar boundary layers. 

Although 6 is a convenient length scale for the comparison of data, a more 
meaningful length scale is, as noted by Clauser, 

where y = (+cf)* is a repeatedly useful notation. 
An appropriate defect shape factor is 

and is related to the conventional shape factor, H ,  according to the relation 

It is instructive to note that, while G is a constant (or, as we will see later, nearly 
constant) for a given equilibrium layer, H depends strongly on y. 

4. The governing equations 

adopt the Boussinesq definition of an ‘effective viscosity ’ ve, such that 
Since we wish to integrate the time-averaged equations of motion, we shall 

T/P ve(au/ay)7 ( 5 )  

where we take T to be the total stress which includes the molecular shear stress 
v(au/ay) as well as the Reynolds stress - m. Alternatively, we have v, = v, + v, 
where vt is the turbulent or eddy viscosity. In  the light of the work of 
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Clauser (1954, 1956), Townsend (1956, 1960, 1961) and Stratford (1959a, b )  on 
boundary-layer flows, it seems possible to make a reasonable assumption con- 
cerning v, which is not explicitly dependent on the pressure gradient. We shall 
consider such an assumption below. 

The equations of motion for the mean velocities may now be written 

au au au a 
ax ay ax a y (  

u-+v-= u-+- v,- , 

au av -+- = 0, 
ax ay 

together with the boundary conditions 

Equation (8a) is a stronger outer boundary condition than usually encountered 
in the literature. It not only requires that u-+ U as y -+ GO, but also requires that 
the displacement thickness (and the momentum thickness) be finite. This 
removes a lack of uniqueness of the type encountered by Hartree (1937) in his 
solution for laminar boundary layers. 

Equation (8c) replaces the usual boundary condition u(0,x) = 0 in the case 
of laminar boundary layers, and states merely that the shear stress must tend 
to the wall shear stress as y --f 0. 

T h e  effective viscosity assumption 

We now wish to specify an effective viscosity hypothesis valid throughout the 
entire defect layer. In  the present paper the discussion will be historically based, 
while in a companion paper (Mellor 1966, hereafter referred to as paper B) we 
shall attempt a more formal and complete discussion of the present hypothesis 
and other hypotheses encountered in the literature. 

In  the outer (approximately 80 yo) part of a turbulent boundary layer it was 
Clauser's discovery that v, might be considered constant with respect to y. Any 
further refinement, such as allowing v, to approach v for large y, presumably 
would not affect the calculated mean-velocity profiles appreciably. The important 
point is to determine the correct quantities on which to scale ve. For high 
Reynolds numbers, v, should be independent of viscosity (as is shown experi- 
mentally in the case of wakes and jets) in the outer layer, and it should be scaled 
on some dimension of the layer size and on some average (since v, is to be con- 

sidered constant) of the velocity defect U - u.. Since U6* = ( U  - u)  dy  
Clauser's stipulation that 

v, = KU6" in the outer layer (9) 
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is not unreasonable. Here K ,  which is of the form of an inverse, turbulent 
Reynolds number, will be determined empirically in 0 6. Including the values 
K = 0-41 and B = 4.9 in equation (l), this raises to three the total number of 
empirical values required in the present analysis. 

For the overlap layer, we shall assume the validity of Prandtl’s mixing length 
theory : 

ve = ~ 2 y 2  [ au/ayl in the overlap layer. 

Prandtl justified equation (10) on the basis of a physical argument which is now 
well known. Assuming 7 ( y )  = ro, one directly obtains the logarithmic behaviour 
characterized by equation (1). A consequence of the present paper is that 
equation (10) appears to be valid even where ~ ( y )  B ro. 

Equations (9) and (10) can now be considered a single, continuous function 
(see equation (16)) if we define the dividing point between the overlap and the 
outer layer as the (smaller) value of ?J where ~~y~ laujayl = K U P .  

A possible alternative is v, = Z2 Iau/ayI, where the ‘mixing length’ I ,  = ~y near 
the wall. Then, in the outer portion, we could take Z = K’S. It is our opinion that 
this alternative hypothesis probably would not yield results significantly different 
from the results based on equation (9). Note that if, as before, we take ve to be 
constant in the outer layer and, consistent with this, take &lay as a constant, 
characteristic of the outer profile, then it is a simple step to show that K N 2Kt2.  

We should also like to mention the assumption adopted by Clauser (1956)t 
for the overlap layer. It may be written: 

17, = K U ~ Y  in the overlap layer. (10’) 

Because of its simplicity, equation (10) was also adopted as the basis of some 
earlier work of the writers (Gibson & Mellor 1962). 

We now find that equations (10) and (lo’) yield nearly identical results as long 
as p is small. In  fact, if 7 = ro in the overlap layer, the identity between equa- 
tion (10) and equation (lo’) may be easily established. However, the failure of 
equation (lo’) for large /3 is clear in the limiting case /3 = 00, or, equivalently, 
u, = 0. We then obtain the unacceptable result v, = 0. 

The equation for ( U -  u)/u, 

It seems proper to seek defect solutions directly in the form 

t Clauser (1956) never actually computed profiles in the overlap layer but assumed that 
they were logarithmic (or, equivalently, that 7 N- 7”) where V,  = K U , ~ .  Thislatter relation 
was used only to determine a matching point, y = KUS*/KU,, to graphically match the 
assumed, logarithmic, overlap layer to the outer layer computed with v, = KUS*. The 
matching procedure was awkward, and he only applied it t o  the case p = 0. We have 
found that the procedure would fail if applied to cases of, say, p = 2 and larger, since the 
the profiles are then no longer logarithmic at y = KUS*/KU,. 

Townsend (1956,1960, 1961) did not independently define a matching point between the 
overlap and outer layer. This gave him a ‘free’ parameter with which to force a smooth 
match between two functions which were solutions of different approximate forms of the 
equations of motion. 
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so that u = U(1- yf‘) ,  ( 1 1  a) 

aulax = ul(i -7f’) - u y y ‘  + u ~ ( x / A )  rr, (11 b )  

aupy = - yujtip. (11 4 
And from equation (7), using the fact that w(0) = 0, we have 

w = - J0 dy = - U’A(7 - yf) + UAy,f- C7yA’(qf‘ -f). ( 1 1 4  

The stream-functionfis defined so thatf(0) = 0. The primes onfdenote differ- 
entiation with respect to 7, and primes on U ,  A and y denote differentiation 
with respect to x. 

If  the above equations are inserted into equation (6) and if we set 0 = I.;/ U6*, 
we obtain, after rearrangement, 

(@f”)’- (%+ 1 (vf”-yff”)+?- UY ’ (f’-yf’”+rff”)+2f’- $2 = 0, (12) 1 UY 
1 

P 
where the important pressure-gradient parameter /3 = - 6* U’/y2U formally 
makes its first appearance. 

Now, anticipating the result obtained for the parameter y in $ 8  (equation (26)) 
we find that 

This term was neglected entirely by Clauser (1956) on the basis that y is a slowly 
varying function of x. We find, however, that it contributes a term of the same 
order as some of the terms already present. 

Now, the quantity (A’ UlAU’ + 1) may be obtained by integrating equation (12) 
from y = 0 to m. With the help of integrals like 

which is a form of the von Karman integral equation. The reason for defining m 
in this particular way will be made clear in $9 5 and 9. Combining equations (12) 
and (13a, b ) ,  we have 

Note that, although we have defined m for convenience, equation (14) contains 
only the parameters P and y. In  our present nomenclature the boundary condi- 
tions are 

limf(q) = 1, 

lim @(q)f”(r) = - 1 .  
?/+O 
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The effective viscosity corresponding to equations (9) and (10) may be written 

where we have set Z = ~~7~ If ” 1 .  The quantity e, defining the edge of the overlap 
layer, is determined from the equation Z ( e )  = K .  This latter equation will 
generally have two roots, so that we must specify e as being the smaller of the two. 

N 1/R or v, N v as 7 -+ 0. 
However, in our subsequent calculations we shall apply equation (16) everywhere, 
and we shall see that f N - ( 1 1 ~ )  In 7 + const. as 7 --f 0. The problem of connecting 
this limiting form with the physically correct behaviour u+ 0 as 7 -+ 0 will be 
discussed in $ 8  and more thoroughly in paper B. 

Except for the fact that we plan to solve equation (14) across the whole defect 
layer and to account for the parameter y ,  equation (14) is somewhat similar to 
that obtained by Townsend. It is worth noting that Townsend (1956, 1960) did 
not explicitly adopt the length scale A, but instead v/u,, and several variables 
associated with the defect profiles are cast directly in the form of Reynolds 
number. Conceptually, this is confusing since the essential feature of defect 
profiles are that they are (almost) independent of Reynolds number. 

The behaviour of 0 should, in reality, be such that 

T h e  transformation for large /3 
It is clear that as /3+ co, and correspondingly u, -+ 0, values off at some fixed 
value of r] will increase indefinitely. This trend was, of course, evident in our 
calculations and it was also evident that the approximate value of 7 marking the 
edge of the boundary layer decreased as ,8 increased (such that, for all ,8, 

s,” f dy = 1). This led to the realization that computations for very large /3, and 

in particular for /3 = co, could be made after effecting the following transforma- 
tions : 

(17 a )  7 = w, 
f (7) = W )  or f’(7) = P”(5), 

y = A / p .  

Substitution of equations (17a, b, c) into equation (14) yields 

The boundary conditions are lim F(<) = 1, 
f+W 

P(0) = 0, (19 b )  
1 

lirn @(t) PI’(<) = - ~ 

5-.0 8’ 

z = Z(6) = - K 2 . p F “ .  

The definition of @ remains the same as in equation (16), except now 

(19c) 
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Equation (19c) represents the non-dimensional shear stress at the wall, which 
vanishes as p+ co. 

The transformation in equations (17 a, b, c) has an appealing physical interpre- 
tation. If we define a ‘pressure velocity’, up = [(6* dp/dx)/p]*, then p* = up/u, 
is the ratio of the pressure velocity to the ‘friction velocity’, and it is seen that 

and that h = u J U .  

5. Range of possible equilibrium solutions 

the outer region where @ = K. We then obtain 
It is instructive to consider equation (14) for the case y = 0 (R = 00) and in 

Kf(y + ( 1  + 2p) qj; + 2pf; = 0. (21) 

Equation (21) is a linear, confluent hypergeometric equation, further details of 
which are discussed in Appendix A. In particular it is found that, for very large 

where x = (2p+ 1)qz/2K and a = 1/2(2p+ 1). Solutions exist only when 
(2p+ 1) 0,  or in the range - 0.5 < p < 00 (at p = -0.5, f; N e-TlK). For 
p < 0.5, no solution exists which vanishes as q + m  Note that the condition 
p > 0 corresponds to decelerating flows, and the condition /3 < 0 to accelerating 
flows. 

If now one examines equation (14) when q is large, the term f ‘ 2  may be 
neglected and f 21 1. The resulting equation is again in the form of a con- 
fluent hypergeometric equation, and we find now that solutions exist when 
- 2p( 1 + l /m) 2 0. From equation (13 b)  it will be seen that this is the same result 
as before if y = 0. However, for y += 0, the lower limit ,8 3 - 0.5 is replaced by the 
condition m 2 - 1. This corresponds to a value of 

Forsimplicity, we shall refer to the range of possible solutions as - 0.5 <,8 < 00, 

with the understanding that the lower limit needs to be amended slightly. 
In all of this discussion the possibility of reverse flow is excluded; that is, 

slightly lower than - 0.5. 

T o  > 0. 

6. The calculated profiles 
We first turn our attention to the constant-pressure case, /3 = 0. Tentatively 

we will set y = 0.04, which is a typical value. By comparison of the calculated 
profile with the data shown in figure 2, the value K = 0.016 was chosen (which 
gave only slightly better agreement than the value K = 0.018 used by Clauser), 
and this will hereafter be applied to all values of p. 

When Clauser initiated his experimental inquiry into equilibrium boundary 
lavers he first assumed that f ’  = ( U  - u)/u, was independent of Reynolds 
number, or equivalently, of y. As is apparent from equation (14), this is not the 
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case. However, it  is found that f ’  is only weakly dependent on y ;  this suggests 
that solutions might be obtained in the form 

or 

0 

C 
3 
1 
a 

b 
I 10 
v 

20 

I 

f ‘  =f ;+yf ;+ ..., 
F’ = Fh+hF;+ ... 

YlS 

x Freeman 

0 Klebanoff & Diehl 

Schultz-Grunow 
Hama 

0 J.H.U.-rough wall 
0 Moore-very rough wall 

FIGURE 2.  Equilibrium defect profiles for /I = 0 (constant pressure). The data are from 
Clauser (1954). The solid line is calculated, and the constant K = 0.016 is determined. 

This approach is described in some detail in Appendix B. Numerical calculations 
yielded (on an IBM 7090; for details see Appendix C) the functionsfh(r),f;(r) or 
F;(c), Fi(6) for the complete range of /?. 

Then, in order to make some statement about the accuracy of the truncated 
series, we made computations directly from equation (14) or (18) (see Appendix 
C). In  figure 3 we have abstracted a single result from each profile, namely the 
variation Af’ or AF’ with respect to y or h for vanishingly small values of 7 or g. 
The effect of y or h is most pronounced when q or c is small. The dashed lines 
represent the linear result from the two-term series expansion, where A f ‘ = yf; ( 0 )  
or AF’ = hF;(O). 

We have been able to obtain the function y(P, R) or A(/?, R) in 0 8. Therefore, 
for the present purpose we shall consider the lines of constant R drawn in figure 3 
as iterative, consideration of which will be verified in $ 8  (and subjected to slight 
modification in paper B). 
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Figure 3 indicates that the linearization f ' = f + yf i or F' = Fh + hF; is fairly 
accurate, and we could proceed on this basis. However, in order that our final 
results be in the simplest possible form, we decide,d to present solutions directly 
from equations (14) or (18) for values of y or h when R = 105. The reason behind 
this decision is that, according to figure 3, the maximum variation in the range 

1.0 I I I I I I I I I I I 1 

0 5  

0 

c- 0 5  =B 

I I I 1 I I I I I I 

0.10 
-2.0 I 

0 002 004 0.06 008 

y(/3 < 1) or 4/3 3 1) 

FIGURE 3. For small p ,  the variation off' with respect t o  y when ,8 < 1; for small [, 
the variation of F' with respect to y when /3 > 1. 

103 6 R < 109 is less than 2 yo of the main-stream velocity, and it is probable that 
the variation cannot be detected experimentally. For the data discussed below, 
this theoretical variation is much less than 2 %. Solutions for R = lo5 are 
therefore presented in table 1 and are plotted in figures 4 and 5. 

By now it will have occurred to some readers that we had originally assumed 
f '  = f '(7) and have found that f' = f'(7, 7). This means that equation (1  1 b) ,  and 
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therefore the following equations, should include the term y‘ af’/ay. However, 
from the linearized solution we find that y’ af’/ay = y’f;, It is then possible to 
reinsert this term in equation (1 1 b), carry it through the analysis and assess its 
effect on the final solutions; we find that the error due to neglect of the term 
is less than 0.1 % and is therefore negligible. In  this regard, we note that 

~~~ 

/3 ...- 0.5 0.0 0.5 1.0 0.76 0.50 0.25 0.10 0.0 lip 
A ... -2.54 -0.59 1-07 2.53 2-97 3.54 4.58 5.84 10.27 A / @  
G ... 4.74 6.58 8.01 9.18 8.56 7.87 7.08 6.49 5.90 GI/?* 

?I f’ f’  f’  f‘=F E’ P’ P’ F’ P‘ f ;  
0-0001 19.91 21.86 23.53 24.98 22.71 20.05 16.65 13.79 10.12 0.0001 
0.0002 18.22 20.17 21-83 23.29 21.25 18.85 15.80 13.24 10.05 0.0002 
0.0005 15.99 17-93 19.60 21.04 19.30 17.25 14.67 12.52 9.93 0.0005 
0.0010 14.31 16.24 17-90 19.33 17.82 16.04 13.80 11.96 9.78 0.0010 
0.0020 12.63 14.55 16-19 17.61 16.32 14.80 12.91 11-37 9.58 0.0020 
0.0050 10.44 12.32 13.91 15.29 14.29 13.12 11.66 10.51 9.17 0.0050 
0.0100 8.81 10.64 12.16 13.46 12.68 11.77 10.65 9-75 8-72 0.0100 
0.0200 7.23 8.96 10.37 11.54 10.97 10.30 9.48 8.83 8-08 0.0200 
0.0300 6.34 7.99 9.30 10.36 9.90 9.36 8.71 8.20 7.60 0.0300 
0-0400 5.73 7.31 8.49 9.38 9.06 8.65 8.11 7.69 7.20 0.0400 
0.0500 6.27 6-72 7-70 8.35 8.19 7-95 7-59 7.26 6.85 0.0500 
0.0600 4.87 6-16 6.92 7.32 7.29 7.20 7.01 6.82 6.53 0.0600 
0.0700 4.49 5-61 6.14 6.29 6.38 6.43 6.41 6.33 6.18 0.0700 
0.0800 4.14 5.08 5.38 5.31 5.50 5.66 5.77 5.80 5.79 0.0800 
0.0900 3.82 4.57 4.66 4.40 4.65 4.90 5.13 5.26 5.36 0.0900 
0.1000 3.52 4.09 3.99 3.57 3.87 4.18 4.50 4-71 4.91 0*1000 
0.1200 2.99 3.22 2.81 2.22 2.53 2.89 3.31 3.62 3.98 0.1200 
0.1400 2.53 2.48 1.87 1.26 1.53 1.86 2.28 2.63 3.05 0.1400 
0.1600 2.14 1.85 1.18 0.66 0.85 1.11 1.48 1.80 2.21 0.1600 
0.1800 d . 8 1  1.35 0.70 0.31 0.44 0.62 0.90 1-16 1.50 0.1800 
0.2000 1.52 0.96 0.39 0.14 0.20 0.32 0.51 0.70 0.95 0.2000 
0-2500 0-99 0.36 0.07 0.01 0.02 0.04 0.09 0.15 0.22 0.2500 
0.3000 0.63 0.11 0.01 0.00 0.00 0.00 0.01 0.20 0.03 0.3000 
0-3500 0-40 0.03 0.00 - - - 0.00 0.00 0.00 0.3500 

- - - 0.4000 0.4000 0.25 0.01 - - 
0-4500 0.16 0.00 - - 

0.5000 0.09 - - 

0-6000 0.03 - - 

0.7000 0.01 - 
0.8000 0.00 - 

- - 

- - - - - - 
- - - - - - - 
- - - - - - - 
- - - - - - - - 
- - - - - - - - 

(Note. The computations were accurate to the third decimal place. Since this is hardly 
significant physically the tabulated numbers have been rounded to the second decimal 
place.) 

TABLE 1. f ‘(7) when - 0.5 < p < 1.0 and P’(5) when 1.0 < p < co 

Townsend (1956) has singled out the two cases where y (x )  = const. or where 
7’ af’/ay = 0. The first instance occurs when m = - 1 (see equations (26) and 
(31)) and the second when /3 = co (or when y = 0). These cases represent equi- 
librium profiles in a theoretically exact sense. However, we have determined 
that the distinction is quantitatively meaningless and deserves no special 
consideration. 
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FIGURE 4. Calculated defect profiles for small p. The dividing point between 
overlap and outer layer is indicated by a small cross-line. 
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FIGURE 5. Calculated defect profiles for large p. Tho dividing point between 

overlap and outer layer is indicated by ~l small cross-line. 
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FIGURE 6 .  Variation of total stress for small /3. 

Shear-stress distribution 
An interesting by-product of our calculation is the shear-stress distribution 
presented in the form r / ro  = - @f” (figure 6) and in the form r/pui = - @F” 
(figure 7). 

7. Comparison of theory and data 
Clauser’s da,ta. 

In  figure 8, theory and data are compared for the non-zero pressure-gradient data 
of Clauser (1954). The appropriate values of p were determined by an examina- 
tion of Clauser’s data? for U ( x )  and a*@). First of all we learned that, experi- 
mentally, ,5 was not precisely constant. 

In  the case of pressure distribution 1, p was nearly constant at  a value slightly 
less than 1.80 in the range 83 in. < x < 323 in., but then increased to around 2-25 
in the much smaller range (relative to 6”) 323in. < x < 387in. The value 
p = 1-8 seemed to be the more accurate choice instead of the value 2.0 previously 
quoted by Clauser. 

In  the case of pressure distribution 2, we found that, experimentally, p 
increased almost linearly from a value of 6 at x: = 100in. to a value of 13 at 
x = 330in. in the range 152in. < x < 330in., the value ,8 = 8 seemed correct, 
but this is not an altogether clear choice. Nevertheless, any of the theoretical 
curves in the range 7 < ,!l 6 9 would not differ greatly from the data. 

It should be noted that Coles (1956) has discovered that Clauser’s data do not 
satisfy the two-dimensional momentum-integral equation very well; this is 
presumably due to the presence of secondary flows. Strangely enough, this 

t The authors wish to thank Prof. Clauser for making the tabulated data available to US. 
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experimental inconsistency is even more pronounced with the data for p = 1.8 
than it is with the data for /3 = 8.0, and it may serve to explain why discrepancies 
between theory and data for small y are evident when /3 = 1.8. 

Perhaps we are splitting hairs; the overall conclusion must be that agreement 
between theory and data is remarkably good. 

2.0 

P l  F* 
3 
Q 
v . 
t- 1.0 
I! 

0 0.1 0.2 

t. 
FIGURE 7. Variation of total stress for large /I. 

0 0.1 0.2 

t. 
FIGURE 7. Variation of total stress for large /I. 

3 

Stratford's data for  near-separating $ow 

For not too large a value of /3, or not too small a value of R, f'(7) or F'(<) are 
logarithmic for large enough 7 or [, so that an overlap is established with the 
logarithmic position of the law of the wall. The law of the wall, in turn, establishes 
the connexion with the true boundary condition u = 0 at y = 0. 

However, for the case /3 = co, a logarithmic portion does not exist at  all. In 
fact, i t  may be seen by comparison with the values listed in table 1 that, for 
small enough 6 ,  

(22) . ( U  - U)/U = 3' = 10.27 -- 15.6&*. P -  

We must now make an assumption which replaces the usual role of the law of 
the wall. We will assume that the increase of u from its value zero, through the 
viscous sublayer to the region where the profile is presumably described by 
equation (22)) is negligible. Assuming T = (dp/dz)y  near the wall and equation 
(lo),  Stratford (1959a) has already shown that 

u = - ( - - )  3 l a p s  ":+c(-j-&-) v d p  4 ) 
K pdX 

where the second term on the right-hand side (Cis a constant) may be considered 
a slip velocity which is proportional to up/R+. Our assumption is therefore that 
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FIGURE 8. Equilibrium defect profiles for p 2 0. The data are from Clauser (1954). 
The solid lines are calculated. 

the constant of proportionality is small in comparison with typical experimental 
values of R*. Nevertheless, we regard this assumption as a temporary expediency 
which will be re-examined in paper B. 

= 0, we obtainuJU = h = l j lO.27,  or If in equation (22) we now set u = 0 at 

h2 - U'S"/U = 0.00948. (34) 

Stratford (19593) has obtained a remarkable set of data. By trial-and-error 
adjustment of the pressure distribution he obtained velocity profiles at  successive 
streamwise stations, so that, near the wall, the condition u N y: was approxi- 

16 Fluid Mech. 24 
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mately satisfied. This, then, should conform to the condition T,, = 0 or p = co. 
From his data? for V ( x )  and &*(x), our best estimate of - U’&*/U is 0.010, in 
good agreement with the theoretical results in equation (24). 

YIS  

0 0.5 

5 

;P 
1 
s 
I 

5 
v 

p=co 

o x = 42 in. cp = 0-399 
A =49in. =0.489 

=63in. =0.624 

10 

I 
FIGURE 9. Equilibrium defect profile for p = co. The data are from Stratford (19596) and 
are compared with t,he calculated solid line. In  the range 0 < y/S < 0.30, u - y*. The 
dashed line for p = 8 is from figure 8. 

In figure 9, Stratford’s profiles are compared with the theory. It should be 
noted that in this plot the point at y = 0 (where u = 0 )  must be considered 
a significant data point. We have also included, for comparison, a profile from 
figure 8 which has been rescaled according to the relation 

( U  - u)/up = ( u - u)/u,p” 

If Stratford’s data were not available, the case p = co might have been 
considered a rather interesting but, perhaps, idealized limiting case of the theory. 

t We wish to thank Dr Stratford for making the tabulated data available to us. 
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However, its experimental existence is gratifying and represents a significant 
plank in the overall theoretical structure. Conversely, the theory establishes the 
rightful role of this set of data as one member of a large continuous family in the 
range -0.5 < /? d co. 

Consideration of Stratford's data will be slightly refined in paper B. 

8. The skin-friction coefficient and the defect shape factor 
For small p, it may be seen in figure 4 that 

(U-u)/uT = f'(7) = -K-1h7+A(/3), (25 a) 

where the defect constant A is given by 

Values of A are tabulated in table 1. If we now assume the existence of a velocity 
overlap where u is described equally well by equations (1) or (25 a), these equa- 
tions may be added to give the skin-friction equation 

U6* f = (3" = K-lln--+A++. 
Y 

For large p, we note that equations (25a, b)  may be conveniently written 

where 

For large /3 equation (26) may also be written 

1 1 U6* A B 
- = -1n-+-+-. 

K/% pi p& 

(25a') 

(25 b') 

(26') 

When lip = 0, we have l /h = Alp* = 10.27, as was obtained in equation (24). 
A plot of A or A//?* is presented in figure 10. The detailed behaviour of A / @  

in the neighbourhood of 1/,8 = 0 is examined in Appendix D. If we refer back to 
figure 3, it  may now be recognized that Af = AA and AF' = AA/@. A has been 
evaluated at R = lo5, but figure 3 could be used to provide the small dependence 
of A on y. 

Finally y ,  or h = yp', is obtained from equation (26) or (26') and is plotted in 
figure 11. At the limit point 1/,5 = 0, the dependence on R vanishes. 

It will be recalled that the universal shape factor G is defined according to the 
relation 

G = lom f 'Zdy, 

or 
G 
- = JOm F'zdv. 
P* 

(27') 

The values of 0 are tabulated in table 1 and plotted in figure 12. 
16-3 
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When /J’ = co, we have Glpt = 5.90 and h = 0.0974; and since 

H = [ 1 - ~ G 1 - l  = [I- h(G/PH)]-l, 

we find that H = 2.35. 
The value of G obtained in the above manner neglects deviations from the 

logarithmic behaviour in the viscous sublayer. So long as the overlap region is 
indeed logarithmic, it is a fairly simple matter to obtain a correction for this 
effect by subtracting out the contribution to equation (27) due to the logarithmic 
behaviour (j” = A - ( 1 / ~ )  In 7) and adding a contribution due to the law of the 
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FIGURE 10. The value A in the skin-friction equation. 

wall which only becomes logarithmic at some finite value of y. A numerical 
integration is involved, and without going into detail we note the result that 

Equation (28) is valid only when the viscous sublayer is not appreciably 
affected by the pressure gradient. A correction could be established for all p 
from the results of paper B. In  any event the correction is only important for 
low Reynolds numbers. For example, for ,8 = 0 and R = 103, the uncorrected 
values of C and H are 6-72 and 1.46 respectively while the corrected values are 
7-20 and 1.50; when R > 104, the correction is very small. 
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FIGURE 11. The skin-friction coefficient in the form y = ($c,)*. 
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FIGURE 12. The defect shape factor 

G = cly. 

H = (1 - yG)-' may be obtained with the aid of figure 11. 
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Motivation for puper B 

The above considerations point to a new problem. For a given /? there are small 
values of R where the defect profiles are not logarithmic outside of the viscous 
sublayer. Our original illustrative example in figure 1 u has, in fact, been chosen 
to demonstrate this point. For /? = 1, the match between the wall and the defect 
layer is poorer for the smaller value of R; for larger /?, the mismatch is accentuated 
so that, as /?+ co, matching becomes impossible for any value of R. This observa- 
tion challenges the validity of equations (26) and (26') and it prompted the more 
detailed inquiry of paper B concerning the flow in the near vicinity of the wall. 

9. Variation of U(x) and A(x) 

by the equilibrium condition 
It is of interest to examine the particular U ( x )  and A(x) distributions implied 

AU'IyU = -/?, (29) 

where /? is constant. The other governing equation is equation (13b), which we 
will rewrite in the form 

and where we have made use of the identity H = l/(l - yG). Equation (30) can 
also be obtained directly from the von Karman momentum-integral equation. 

Now, equations (29) and (30) may be rigorously solved together with equa- 
tion (26) and the values A(/?)  and G(/?); the latter would account for the small 
variation of y and H with x. However, to obtain simple approximate results, we 
will take m(x)  as constant. Equation (30) may then be integrated to give 

a, A = (gym 
where the subscript 0 represents initial values at :c = 0. 

The combination of equation (31) with equation (29) and integration yields 

where Z = I0 (y /yo)  dx, and also 

If /? is varied so that the right-hand side of equation (30) vanishes, then 
nz+ 2 co; the right-hand sides of equations (32) and (33) become, in this limit, 
exp [ - /?ytZ/S;] and 1 respectively. 

Finally, in the limit /?-+a, the combination/?yi may be replaced by h2 = 0.0095 
(equation (24)). For this condition we also found that H = 2-35. Therefore, 
m = - [H -t- 21-1 = - 0.230 is the unique value of m at this limiting point. 
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In  figure 13 we illustrate equation (32) for the typical value R, = U,S$/v = lo5. 
Note that figure 13 would only be slightly altered by changes in R, (or yo), except 
for a rescaling of the abscissa. A nearly universal plot could be constructed by 
changing the abscissa to py;iZ/S$) but then some direct physical feeling would 
be lost. 

2.0 - 

s . 
b 

1.0 

0 

0 1.0 2.0 

(%/a;) x 10-3 

FIGURE 13. Main-stream velocity distributions necessary to produce 
equilibrium profiles for R, = lo5. 

Figure 13, therefore, represents a continuous family of solutions with respect 
to /3 in the complete range - 0.54 < /? 6 00 (the lower limit corresponding to the 
condition m = - 1 at R, = lo5). 

Coles’s ‘law of the wake’ 

The authors have been asked to compare their findings with the work of Coles 
(1956)’ who, from a detailed and thorough examination of experimental data, 
put forth the following correlation for the defect profile: 

where 7r is a free parameter and the ‘wake function’ w(y/S) is a prescribed func- 
tion. Besides recognizing the importance of the defect profile, the correlation 
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represents a synthesis of a great deal of experimental data. In  particular, Coles 
(1956) has shown that the correlation profile does agree with Clauser’s data and 
therefore our calculated curves at least up to ,8 1: 10; and one sees from figure 4 
that the case 7~ = 0 does agree well with the limiting case /3 = -0.5.  However, 
as p+co (and u,+O while, presumably, u,n+const.) the correlation does not 
check with Stratford’s data or our calculated result. 

In search of a connexion between n and an equilibrium-flow parameter, Coles 
(1957) has proposed the condition D = const., where, in our present nomen- 
clature, D- 1 = yf  U / y U f  (see equation (13a)). Coles correctly identifies the 
condition D = 1 with the limiting case (which he calls ‘pure wall flow’), m = - 1 
or p N - 0.5. The prediction is based on an extrapolation of experimental observa- 
tion, and also on arguments which are presented as deductive arguments; but we 
do not understand the a priori basis of these arguments. However, we now 
know that D is a second-order parameter which is either close to 1 or has an 
awkward singularity at  /3 = 0, and, in general, is not only dependent on p but is 
also strongly dependent on y (see equation (13a) and (13b)); it  is therefore not 
a parameter suitable for characterizing equilibrium flows. 

By comparing Coles’s profile for small 7 with equation (25a) ,  we find that 
2 n / ~  = A(P) - (lnvo)/K, where v0 = &/A, may be determined from table 1. Thus 
7~ may be simply related to /3, which, we believe, is the fundamental parameter of 
equilibrium turbulent boundary layers as originally proposed by Clauser. 

10. Conclusions 
Equations (9) and (10) together with the empirical constants K = 0.41 and 

K = 0-016 suffice to predict equilibrium turbulent defect profiles in the complete 
range - 0.5 < p < 00 with considerable precision. 

Matching the defect profiles with the logarithmic law of the wall (equation (1)) 
provides a skin-friction equation and brings in a third empirical constant, 
p = 4.9. Details of the matching procedure are re-examined in paper B. 

The three empirical constants are a reflexion of our inherent inability to deal 
directly with turbulent flow. Nevertheless, it appears that we have attained 
a rather complete and detailed knowledge of tbe behaviour of equilibrium 
turbulent boundary layers. 

Appendix A : behaviour off’ for large q 

5 5 ,  the discussion of equation (14) involves no new considerations. 
For simplicity we shall discuss the behaviour of equation (21). As indicated in 

For p > - 0.5, set 
(35a,  b) 1 + 2 p q  f h  = e-”y(x), x = 

R 3 ‘ 

Substituting (35a, b) into equation (21), we obtain 

xy”+(c-x)y’-a~y = 0,  (36) 

where c = 1/3 and a = l / Z (  1 + 2p). Equation (36) is a confluent hypergeometric 
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function and, for our purposes, is discussed in a convenient way by Jeffries (1962). 
Solutions to equation (36) are 

a a@+ 1)x2 
c C(Cf1) 2 !  

y1 = M(a ,c ;x )  = l+-x+-- + ..., 
and y2 = xl-CM(l+a-c,B-c;x). 
A solution of the form 

( -c)!  (c-2)! 
Y3 = ___ Y2 (a - C)! y1 + 

is of interest to us since, for large positive x, 

1371 

139) 

Equations (40) and (35a) yield the result quoted in 0 5.  Any other combination 
of y1 and ya has a leading term like ezxu-c. This gives the result thatf; N T / - ~ B / ( ~ + ~ I )  
or that f o  N T / ~ ’ ( ~ + ~ B ) .  Thus f o  -+ 00 as 7 -+ co and this solution is rejected. 

(41) 

so that x is positive. We obtain equation (36), where now c = -4 and 
a = -/3/(I + 2p). For large positive x, all solutions give y-+ co as z+m. 

1+2pq2 
For p < -0.5, set 

fA(q) = y(x); x = -___- 
K 2 ’  

Appendix B : Two-term expansion of equation (14) or (18) 
Dealing first with equation (14), we set 

f=fo+rf1+..., (42 a )  

Q, = Q,,+yQ,,+ ...) (42 b) 

G = Go+yGl+ ..., (42c)  

where we will retain only the first and second term in the series. Furthermore, 

where 
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Equations (43a) and (43 b)  may be integrated once with the help ofthe boundary 
conditions to give 

(46a) @ o f ; + ( 2 p + 1 ) 7 f ; - f o  = - 1 ,  

@of'; + @lf; + (2p + 1) 7f; -f, 

The remaining boundary conditions are (44a, b)  arid (45a, b) .  
Now, corresponding to equation (16) we can write 

= K ,  
and 

(47 a) 

where 8, = K2q2 If;l, zl = K272f;Sgn (f:), 

and e is the first root of the equation Z,(e) = K .  Equation (47b) requires some 
explanation. It derives from an expansion of @ in the form 

qz, + 72,) = @(Z,) + @'(Z,) yz,  + . . . , 
so that Ol = @'(Z,)Z,. But @'(Z,) = 1 for 7 < e and @'(8,) = 0 for 7 > e ,  
thereby giving equation (47 b). 

Equation (18) may be treated in a similar manner, or we may directly substitute 
fo(7) = Po(&), fl(7) = p4Fl(() and 7 = &/pi into equations (43a, b)  or (46a, b).  

Appendix C : notes on the numerical computations 
Solutions from equations (46a, b)  

(a) The equations were solved iteratively. An initial guess, according to 
equation (lo'), was made for 0, when 7 < e .  Equation (46a) was then treated 
as a linear equation. The combination @of'; + in equation (46 b )  is equivalent 
to 2Q0f; when 7 < e ,  but Q,f; when 7 > e,  and equation (46 b)  is therefore linear. 

( b )  At each iteration, a particular solution (forf, it is 1) and solutions to the 
homogeneous equations were obtained using a third-degree Runga-Kutta 
method (Hildebrand 1949). The solutions were combined linearly to satisfy the 
boundary conditions. 

( c )  At each iteration, a new estimate of  @, (when 7 < e )  was made by com- 
bining equation (46u) with (47a) and taking the square root. This gives 
@, = K?[ 1 + (1 + 3p) 7f; -fO]* and shows the close resemblance to equation (10') 
for small ~3 and 7. 

(a) The logarithmic singularity a t  7 = 0 may be removed by setting 
fo = 1 +clul+c2(ul ln~+u2);  u1 and u2 are then regular a t  7 = 0. However, 
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solutions obtained by this procedure and from the equation for F,, where we set 
F, = 1 +c,ul+c2u2 (the inner boundary conditions were fixed at 7 = 0.0001 so 
that F,(O.OOOl) = O ~ O O O l F ~ ( O ~ O O O l ) ) ,  agreed in the second decimal place when 

( e )  The outer boundary condition was set at  a finite 7 = y2, so thatf,(T,) = 1. 
y2 was chosen large enough so that 1 - fo(ql) < where T ~ -  ql 0.2. An 
independent check on the accuracy was that fA(7) -+ O*OOO as q -+ qz. 

(f) Only three of four iterations were necessary to converge to the third 
decimal place. This was assisted by using an initial guess, Q,, for each calculation 
in p, corresponding to the a, determined by the previous calculations in p. 

(9) By varying the integrating increment, it was determined that all decimal 
places published are (numerically) significant. 

p = 1/p = 1. 

Solutions directly from equation (14)  

Our previous experience indicates a method of solution directly from equation 
(14)  or equation (19) which is strongly convergent. We first integrate equation (14)  
once to give 

or for equation ( 1  8) we have 

Arrange the result in two parts; the first part is identical in form with equation 
(46a)  and the second part is the remainder R. The equation is solved in the same 
manner asf, or F, above but in obtaining a ‘particular solution’ R(7) or R(E) is 
included and is determined from the previous iteration. Initially R = 0. (If 
R = 0 were inserted at  every iteration we would obtain f = fo or F = F,, which 
is a fair approximation to the exact solution.) 

Appendix D: the behaviour of A/@+ in the neighbourhood of 1/@ = 0 

Appendix C contains parameters which are virtually independent of p. 
In the neighbourhood of 1//3 = 0, the left-hand side of equation (18’) in 

Now, for very small 5, equation (18’) may be written 

@F“ = - 1/p, (48) 

and since @ = ~ ~ f ; ~  I F”J we can obtain 
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where Alp* + (1/~/31) lnpf is the constant of integration. Knowing the behaviour 
of F‘ (equation (as)), one can assess the terms in equation (IS‘), show that 

and find that the next-order approximation for (DF” is 

(DF” = - ( H  + 1) [Ft + 2 h g P  - (I//?). (50) 

For very small [, I/@ is larger than the other terms on the right-hand side of 
equation (50). At some t = a, these other terms become comparable with 1/p, so 
that 

where b = O(1). 

(49) is valid; (b )  when 6 > a, equation (IS’) with I//? set equal to 0 is valid. 

= b, (51) 
&‘’(a) [H + 1 - 2hF‘(a)] 

U/P)  

Now, as a rough approximation, we presume that: (a )  when $ < a, equation 

Statement (b) ,  together with the boundary conditions 

B”(o0) = 0 and F ( a )  N F(0) = 0, 

merely asserts that B”(a) can only vary a small amount with respect to ,8 as 
1//3-+0; in fact, as 1/p+ 0,  a+O and F’(a)-+ 10.27, so that combining equa- 
tion (51) and (49) yields 

It will be noticed that our final result is only weakly dependent on b as l/p+ 0. 
If we, finally, set b = 1.4 we obtain a result which nicely fairs in with the calcu- 
lated points in the range 0 < 11p < 0-1. 

The work was carried out under the Bureau of Ships Fundamental Hydro- 
mechanics Research Program, SR 009 01 01, administered by the David Taylor 
Model Basin; contract Nonr-1858(38). 
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